On Asymptotic Variational Wave Equations

نویسندگان

  • Alberto Bressan
  • Ping Zhang
  • Yuxi Zheng
چکیده

We investigate the equation (ut + (f(u))x)x = f (u)(ux)/2 where f(u) is a given smooth function. Typically f(u) = u/2 or u/3. This equation models unidirectional and weakly nonlinear waves for the variational wave equation utt − c(u)(c(u)ux)x = 0 which models some liquid crystals with a natural sinusoidal c. The equation itself is also the Euler-Lagrange equation of a variational problem. Two natural classes of solutions can be associated with this equation. A conservative solution will preserve its energy in time, while a dissipative weak solution loses energy at the time when singularities appear. Conservative solutions are globally defined, forward and backward in time, and preserve interesting geometric features, such as the Hamiltonian structure. On the other hand, dissipative solutions appear to be more natural from the physical point of view. 2 Alberto Bressan, Ping Zhang, Yuxi Zheng We establish the well-posedness of the Cauchy problem within the class of conservative solutions, for initial data having finite energy and assuming that the flux function f has Lipschitz continuous second-order derivative. In the case where f is convex, the Cauchy problem is well-posed also within the class of dissipative solutions. However, when f is not convex, we show that the dissipative solutions do not depend continuously on the initial data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solution of Wave Equations Near Seawalls by Finite Element Method

A 2D finite element model for the solution of wave equations is developed. The fluid is considered as incompressible and irrotational. This is a difficult mathematical problem to solve numerically as well as analytically because the condition of the dynamic boundary (Bernoulli’s equation) on the free surface is not fixed and varies with time. The finite element technique is applied to solve non...

متن کامل

On the T 3-Gowdy Symmetric Einstein-Maxwell Equations

Recently, progress has been made in the analysis of the expanding direction of Gowdy spacetimes. The purpose of the present paper is to point out that some of the techniques used in the analysis can be applied to other problems. The essential equations in the case of the Gowdy spacetimes can be considered as a special case of a wider class of variational problems. Here we are interested in the ...

متن کامل

Variational principle for nonlinear wave propagation in dissipative systems.

The dynamics of many natural systems is dominated by nonlinear waves propagating through the medium. We show that in any extended system that supports nonlinear wave fronts with positive surface tension, the asymptotic wave-front dynamics can be formulated as a gradient system, even when the underlying evolution equations for the field variables cannot be written as a gradient system. The varia...

متن کامل

Front propagation in infinite cylinders: a variational approach

We present a comprehensive study of front propagation for scalar reaction-diffusion-advection equations in infinite cylinders in the presence of transverse advection by a potential flow and mixtures of Dirichlet and Neumann boundary conditions. We take on a variational point of view, based on the fact that the considered equation is a gradient flow in an exponentially weighted L-space generated...

متن کامل

Periodic Wave Shock solutions of Burgers equations

In this paper we investigate the exact peroidic wave shock solutions of the Burgers equations. Our purpose is to describe the asymptotic behavior of the solution in the cauchy problem for viscid equation with small parametr ε and to discuss in particular the case of periodic wave shock. We show that the solution of this problem approaches the shock type solution for the cauchy problem of the in...

متن کامل

A Numerical and Analytical Study of Vortex Rings with Swirl

We study the growth of disturbances to vortex rings with swirl, which are exact solutions of the Euler equations of inviscid ow, using two contrasting methods. The motion of the perturbed vortex rings can be regarded as a prototype for the inviscid dynamics of vortex structures in 3D. Exact rings with swirl are computed as steady, axisymmetric ows using a variational method. Asymptotic analysis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004